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TECHNICAL PAPER

THE ESTIMATION ERROR COVARIANCE MATRIX
FOR THE IDEAL STATE RECONSTRUCTOR

WITH MEASUREMENT NOISE

I. INTRODUCTION

Recently, Polites developed a new state reconstructor for deterministic digital control systems

which he called the Ideal State Reconstructor (ISR) [1-5]. It was so named because+ for a linear time

invariant plant with noise-free measurements, measurable inputs, and known parameters, the ISR exactly

reconstructs the state of the plant and does so without requiring any knowledge of the plant's initial state.

In addition, the ISR adds no new states or eigenvalues to the system. Nor does it affect the plant equation

for the system in anyway: it affects the measurement equation only. However+ systems in the real world

normally have some measurement noise+ nonmeasurable inputs+ and parameter uncertainty. Hence+ the

effect of these things on the ISR needs to be determined. This paper addresses the first.

The outline of the paper is as follows. First, a brief review of the ISR is given, in Section II.

Then, an analysis of the ISR with measurement noise is presented, in Section Ill. Next, an example is

given, in Section IV, which illustrates the effect of measurement noise on the ISR. Finally, some con-

clusions and recommendations for further study are presented, in Section V.

II. A REVIEW OF THE IDEAL STATE RECONSTRUCTOR

Consider the ubiquitous continuous-time plant driven by a zero-order-hold with a sampled output,

as shown in Figure 1. The state vector x(t) E R"; the control input vector .uCkT) ERr: the standard output

or measurement vector _y,,(kT) __ R"I; the system matrix F E R""'I; the control matrix G E R""r: the standard

output matrix C_ E R '''`''_. It is well known that this system can be modeled at the sampling instants by the

discrete state equations [6]

x[(k+ I)T] = Ax(kT) + Bu_(kT) (1)

y,(kT) = C,x(kT) (2)

where

,5(t) =2 °.' I(sl-F)-I] E R""" , (3)



(I) ChooseN so that

N >t-n/p

(2) Form the matrix _t where

-CI. <b(())

T
cv -g)

T
c,: +1-(N-I) -_- ]

__ R_NP Ixn
(7)

and check to be certain it has full rank (i.e., rank n). If so, proceed by letting

c,:_: = (c0_)-I c,rE R,,,/xp_ (8 t

(3) Choose q so that

q _-_ 11--I11

(4) Now choose a matrix D E R q'" so that

(10)

has full rank (i.e., rank n).

(5) Let

('l: = (CTTC'r) -I CTTE R '''1'''+ ql (11)

and
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H = D o_* E. R qxINpl (12)

(6) Partition H as follows

H = [HolH, i ... !HN_,I

to reveal H.i. j = 0,1 ..... N-I.

(7) Form the matrix [3 where

m

If"Cv eb(_,)dk] G
o

-IT'N I

c, [f +(a_d_,]G
(I

-{N-I I(T,NI

CF[f +tX_dX]G
o

__ RtNP )xr

and let

E_ = H_ER qx'

The ISR is now completely defined for exact state reconstruction.

A special form of the ISR is obtained when C_ is a null matrix (i.e., m = 0) and q = n - m = n.

Then, D_ E Rn*n and, by virtue of equations (10) and (11),

CT = D_ E R '_'' (13)

and

(14)C_ = D-' E R"'" ,

respectively.



III. ANALYSIS OF THE IDEAL STATE RECONSTRUCTOR

WITH MEASUREMENT NOISE

Now consider the system in Figure 3, which is the system in Figure 2 with measurement noise

added. The symbol (-) denotes a quantity corrupted by noise. The measurement noise sources are Vs(t)

E. R'" and vl:It) E Rp. They are assumed to have the following statistical properties after sampling:

E [t,s(kT)] = (_) E R m

E IL's(kT) vsT(jT)] = Rss g(k-j) E R '''_''' ,

E Lut.,(k f-f-)] = 0 E R p ,

T vFT(i TE IL't:(k -_-) . -_-)1 = RH _,(k-j) E Rpxp

> (15)

E [t_,:(kr) m. r (kT -_i T)] = Rsv 8(j) E R'''_p ,
l

E ll_'t.(kT) _;sl(kT - j --_-,)] = RI:S 8(j) = RsI: T 8(j) ( R ex'''

for all integer values of k and j. It is straightforward to show that the output of the [SR in Figure 3 can be

expressed as

-_V"r'(k]') = -_VT'(kT) + CT { 12t___/_(,}__2F_i}_vs(kT)

where yT'(kT) is the output for the noise-free case and

_i.(kT) =

EF(kT)

I

|

T
vvlkT - (N-l_ _I

E R Np

1
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Assume the parameter matrices in the ISR are chosen by the procedure described in Section II and exact

state reconstruction is achieved in the noise-free case. Then yT'(kT) is given by equation (5). Obviously,

with measurement noise, _f'(kT) is an estimate of_x(kT). Hence, the state estimation error for the ISR can
be written as

A _ L's(kT) , R n
xc(kT) = yT'(kT) - x(kT) = C-_ --lT.l--_;_-(_yi- } IE (16)

With equation (16) and the statistical properties of the measurement noise specified in equations (15), the
A

statistical properties of x,:(kT) are found to be

E [_,(kT)] = 0_

and

A A . A T •

COV [x_(kT). _(jT)] = E [_,_(kT) _x_ (3T)] - E [_,_(kT)] E [__cT(jT)] = R_o a(k-j) ,

for all integer values of k and j, where

or

= C

u

F Rss ' [RsF0 ... 0] H T
i

[ .........................

-RsFT

0

0

H

i

I

I

I

I Hi

!

!

t

i

i
i

RFF 0

0 RFF

U T¸

(c_)T

(17)

RCC

I

Rss , RSF Ho T
I

' N-I
l

Ho RSF T ' _ (Hi RFF Hi T )
t

' i=0f

m

)T
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A

If the performance index J for the ISR is chosen to be the trace of COV[x_(kT), _(kT)], then

J = trace ICOV A A[x__(kT), x_(kT)l I = trace (Rc_) , (18)

which is invariant with time.

Consider the special form of the ISR where C_ is a null matrix (i.e., m = 0) andq = n-m = n. In

this case, there are no standard measurements and, hence, no associated measurement noise. Therefore,

Rss and Rst: are null matrices. With this and equations (12), (14), and (17),

Rvv 0 ]Rec = or* " , (c_*) T (19)

0 RFI:

By virtue of equations (7), (8), (15), (18), and (19), once the plant is fixed and the measurement noise is

specified, the performance index J is only a function of N, the number of measurements used in estimat-

ing the state every T seconds. The sensitivity of J to N will be illustrated by means of an example, pre-
sented in Section IV.

IV. AN EXAMPLE

Consider the system in Figure 4. It is a double integrator plant with measurement noise and the

special form of the ISR described in Sections II and III. It is assumed that the statistical properties of the

measurement noise after sampling are given by equations (15) with RvF = I; Rss and RsF are null
matrices. Furthermore, it is assumed that the time interval between state estimates is T = I sec. The

number of measurements N, used in estimating the state at a given time, is a parameter which will be

varied to see the affect of N on the estimator performance index J.

Manipulating the plant in Figure 4 into the format of Figure 3 yields

(20)
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and

CF--[1 O] , (21)

where C_ is a null matrix. It tollows from the definitions of F, G, Cv, and C,. given in Section 11 that n =

"_ r = p = I and m = O. From equations (3) and (20),

_b(t) ] (22)

Proceed now with the design of the ISR using the procedure outlined in Section II. From equation

(6), the reqtlirement on N is that N /> 2. From equations (7), (21), and (22),

O_

-i

= 1

1

0

-I/N

-2/N

-(N- I )/N

when T = 1 sec. For N _> 2, o_ is seen to have full rank [i.e., rank (o_) = 21 as required. Since N is a

variable, determination of o_* according to equation (8) is best done numerically. From equation (9), the

requirement on q is that q /> 2. For the special form of the 1SR, q = 2. Choose

so that, by virtue of equation (13),

which has full rank as required.

11



Theremainderof thecalculationsto definetheISRarestraightforwardandwill beomittedhere,
exceptfor thecalculationof theperformanceindexJ, definedby equations(I 8) and(19) for thespecial
form of theISR,Thiswasdonenumericallyfor variousvaluesof N. Theresultsareshowngraphicallyin
Figure5. Thegraphindicatesthatthemoremeasurementsusedinestimatingthe state at a given time, the

better the estimate, on a statistical basis. It also shows that for N/> 4, J is essentially proportional to l/N,

ala the variance for the average of N independent random variables with the same statistical properties [7].
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V. CONCLUSIONS AND RECOMMENDATIONS

This paper derived a general expression for the state estimation error covariance matrix for the

Ideal State Reconstructor (ISR) when the input measurements are corrupted by measurement noise. An

example was presented which showed that the more measurements used in estimating the state of the

plant at a given time, the better the estimate, on a statistical basis. Intuitively, one would expect this to be

true in general. Assuming this is the case, then the ISR is ideally suited for systems where measurements

become available more frequently than the state needs to be estimated and control law equations need to

be solved. A good implementation of it would be to have a microprocessor dedicated to multiplying the

measurements made every T/N seconds by the weighting matrices Hi, j = 0,1 ..... N-I, and summing

these results, recursively. After N repetitions, the result could be transferred to a central processor along

with the measurements made every T seconds. In the central processor, the remainder of the calculations

to estimate the state of the system could be made and the control law equations solved. Before the control

law equations are solved, the estimated state from the ISR could be passed through a Kalman filter to

further improve it. This is an area for future study. Determining the effects of process noise and modeling
errors on the ISR is also.

13
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